
" ^ • » " K * « * k^" " ■. »w V ■».»■_■. •^" »^ "^^ ^.,' K^ tT «S.- »^,-'. I^" »"_ ■ R.-i*-T "W-L .•^"'. 7S.n ^.IfV.' , -L' VT^. ifJI **<.?

COMPUTER SYSTEMS LABORATORY

STANFORD UNIVERSITY ■ STANFORD, CA 94305-2192

Microsupercomputers: Design and Implementation

Stanford University
Computer Systems Laboratory

Technical Progress Report

September 1987 - March 1988

Principal Investigator
John L. Hennessy

Associate Investigator
Mark A. Horowitz

o . -
i «J

0 «w 2

'„y^iJ«, ^. VM J". '.<.Vj Ta^^.<U "»^V\r>fX><. A.'.".«'^V,-V"JI/'. i^ v., .". J- ^ V. JVV .•.-,*-.. rv.-w^r.^ «-L» r^nx.-v» rv» -.«r.» ^« - » - «"kr WK» -vk-iw,' wKvii,-

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
m RLE COPi <Sh

REPORT DOCUMENTATION PAGE
1, REPORT NUMBER 2. GOVT ACCESSION NO

4, TITLE (and Subtitle)

MICROSUPERCOMPUTERS: DESIGN AND IMPLEMENTATION

7, AUTHGRIsl

John L. Hennessy and
Mark A. Horowitz

g PERFORMING ORGANIZATION NAME AND ADDRESS

Stanford University
Department of Electrical Engineering
Stanford, CA 94305'

11. CONTROLLING OFFICE NAME AND ADDRESS
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209-2308

HEAD INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT & PERIOD COVERED

Semiannual Technical Progress
Report

September 1987 - March 1988
6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBERS)

N00014-87-K-0828

10 PROGRAM ELEMENT, PROJECT, TASK
AREA 8i WORK UNIT NUMBERS

R5.T Project Code: 4331685

12. REPORT DATE

April 1988
13. NO. OF PAGES

26

14, MONITORING AGENCY NAME & ADDRESS (if dIH. from Controlling Office)

Office of Naval Research
Computer Science Division, Code: 1133
800 N. Quincy St., Arlington, VA 2217-5000

15. SECURITY CLASS, (of this report)

Unclassified

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

None

16 DISTRIBUTION STATEMENT (of this report)

Approved for public release. Distribution Unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from fepor

18. SUPPLEMENTARY NOTES

Publications noted in bibliography attached

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Computer Architecture, Parallel Programming; CAD Tools

20. ABSTRACT (Continue on rev/erse side if necessary and identify by block number)

Summary of technical progress.

00,^,31473 FORM
1 JAN 73

EDITION OF 1 NOV 65 IS OBSOLETE
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

KT, PJ-P^J** fV -ftTL^W JVJ"« tfV Jri \n< kTM -^ Lrl .. * .^ L-^1 '-^ w^* V^" U1» i. * rf^ y ■" ii ^ k ■ fc. ^ k ^.j^n^ Rk P »r r^j* - ji -j^ -u» .-j< -^ -%m * ~^ r-^ nM r-« r\jn .r'^ rv^ i-w\ ** yn ■ w-i i «-\ v^«wvu

Table of Contents
1 Parallel Processor Architecture 2

1.1 Characteristics of Parallel Programs 2
1.2 Multiprocessor Applications 2
1J Scaleable Shared Memory Multiprocessors 3
1.4 High Performance Cache Design 3

2 Parallel Software, j) 4

2.1 Multiprocessor Applications 4
2.2 Parallel Programming and Parallel Compilation 4

3 Computer-Aided Design (CAD) Tools 5
3.1 Synthesis 5

3.1.1 Hardware Synthesis 5
3.2 Simulation 5

3.2.1 Incremental Simulation 5
3.2.2 Parallel Simulation Study 6

33 Power and Gnd Noise 6
3.4 Placement and Routing with Parallel Processing 7

4 VLSI 8

4.1 RAM Design 8
4.2 BiCMOS 8

43 Multiplication y

4.4 Single-Chip Testers 9

■'■ TV '

r o n
-

* c i /■'

'

September 1987 - March 1988

/> W JH „ •■ ^ UT" «^ k^.V^1 VFJTKiTW.k' K "J« T Jf'JJ "urf ■•->(> "J" > -> rjr -j< rx .-u« ,nj< rj> r>A ^ vinunr^ w^iir,-wr, Kn mnrLnri w\. v\.»i,w, »r\i>n. «-j »-j ir-«-i, »-.. na-tmwvn

Technical Progress Report

September 1987 - March 1988

Contract No. N00014-87-K-0828

Order No. 1133

R & T Project Code: 4331685

Principal Investigator: John Hennessy

Monitored by Major Mark Pullen, Wm. Bandy

Accession For_

NTIS GRA&I
DTIC TAB
Unaruiounced □
Justification

?
By
Distribution/

Availability Coäe3_

[Avu?l and/or

Dlst I Special

This work is supported by the Defense Advanced Research Projects Agency and Office
of Naval Research.

The views and conclusions contained in this document are those of the authors and
shouid not be interpreted as representing the official policies, either expressed or
in,plied, of the Defense Advanced Research Projects Agency or the U.S. Government.

September 1987 - March 1988

•X««^^-* W> J" «» .V LVLVVV -S .% ". ' V. «." V • " . f ^ * . » . < . - •, ■ ■ ■ -.- '.T •.T^^l.'V'.'Vir» t ■■ - - . ■ .'Mnm'ii-.*-\M.rimrsf\\\fMT*i >/-./I^J rv w-.

Technical Progress

The major progress to be reported for this period is:

1 Parallel Processor Architecture

Work in multiprocessor architecture involves three different aspects. First, we are
studying the behavior of parallel applications to understand their behavior and to design
architectures to support them. Second, we are exploring a particular set of shared-
memory architectures that appear to have substantial scalability. Third, we continue to
explore high performance cache design, which piays a vital role in the use of a high-
performance processor in a multiprocessor.

1.1 Characteristics of Parallel Programs

This effort attempts to understand how parallel programs share data and how they
synchronize. We are measuring not only frequency but also the characteristics of
interacting references and synchronization events. We have built two complete
measurement systems and are working on a third.

The first system is based on Agarwal's ATUM system [Agarwal 88a], using microcode to
trace a multiprocessor VAX. The main limitation is that only applications whose process
count is not much greater (say within a factor of 2) of the processor count can be used.

1.2 Multiprocessor Applications

We now have parallel memory reference traces for 3 applications from a 4-processor
VAX-8350 computer. Preliminary results of the analysis are reported in the paper
"Memory Reference Characteristics of Multiprocessor Applications under MACH" by
Anant Agarwal and Anoop Gupta to appear in SIGMETRICS 1988 [Agarwal 88b].

We have also completed a program based on the VAX T-bit that running on a
uniprocessor that enables us to get traces corresponding to a multiprocessor with a
large number of processors. Traces from this program have also been obtained and
are currently being analyzed in greater detail. One of the challenges we now face is to
obtain and develop interesting applications that can usefully exploit large numbers of
processors.

The two earlier systems suffer because they cannot be extended to large numbers of
processes or because doing so would yield a system that runs much too slow. Our new
system uses compiled simulation, creating timestamp points at synchronization
intervals. The initial version of this system can only collect data on synchronization

September 1987 - March 1988 2

^.VJV-JV. V >;\> > > "> > .- .• "> "." ^ > -» >".. "■>-.■.«>» ."• ,-">" .- . ■ ^^kT >. • u^ '.TI.^ intWTruTTUXWbTi . • .^ . • ^^ T» . • L'VUN -. i%vs , -yv,^ -. -.

operations, but it has already produced significant insights [Davis 88]. The new system
will trace both data and synchronization for large applications with hundreds of
processes. Accuracy of the trace information is a key goal!

1.3 Scaleable Shared Memory Multiprocessors

One of the major challenges in building a shared-memory multiprocessor with a large
number of processors is designing a suitable cache consistency mechanism. This is
necessary so that each processor can keep local copies of shared data in its cache and
yet still see memory data that is consistent with that seen by the other processors.
Cache consistency schemes used in existing multiprocessors rely on a bus-based
interconnect between the processors to "broadcast" memory addresses corresponding
to recently-changed data. Since physical limitations rule out a single bus for
interconnecting a large number of processors, we are studying directory-based cache
consistency schemes as a feasible alternative for a machine with a more general
interprocessor network. These techniques maintain a directory associated with main
memory that indicates which processors currently contain a cached copy of a given data
item.

We are focusing our efforts on several important issues concerning directory-based
protocols. First, we are using address traces collected from multiprocessors running
parallel applications to simulate the operation of different cache consistency schemes
under realistic conditions [Agarwal 88c]. This information allows us to compare and
evaluate the network traffic generated by these schemes. Second, we are studying the
hardware implementation details of the directory mechanism to determine the design
complexity and the area cost incurred with this technique. Finally, we are studying the
effect of the directory-based protocols on correct multiprocessor execution in the
presence of write buffering, a queueing scheme used in many uniprocessors to improve
memory performance.

1.4 High Performance Cache Design

In a high performance multiprocessor, design of the cache is critical to reducing the
amount of bus traffic. However, using bus traffic as the only metric leads to designs that
may not be the most efficient (since they may raise access time of the cache or the
misspenalty). A methodology for examining all factors collectively has been created.
Using extensive trace data, some of the conventional wisdom about cache design has
been shown to be flawed [Przybylski 88].

Staff: R. Simoni, J. Hennessy, M. Horowitz, A. Gupta, H. Davis, S. Przybylski,
A. Tucker, A. Agarwal

September 1987 - March 1988

2 Parallel Software

Our efforts in this arena concentrate in developing innovative parallel applications for
use in studying both the properties of parallel applications and for studying "compilation"
strategies. The other thrust of our work rs on techniques for compiling parallel programs.

2.1 Multiprocessor Applications

On the applications front, the PROTEAN application that we were working on is now
running on the 16 processor Encore Multimax. We have been experimenting with
granularity and speed-up tradeoffs, and the effects of varying the granularity at run-time.
Preliminary results are reported in the paper "Exploiting Variable Grain Parallelism at
Pun-time" [Gupta 88]. As an extension, we have been trying to port the PROTEAN
application to the 64-processor NCUBE at Stanford, but because of both software and
hardware problems with the NCUBE, we have not succeeded so far.

2.2 Parallel Programming and Parallel Compilation

This research concentrates on techniques to exploit parallelism. We assume that
parallelism will be available at multiple levels, typically at different grain sizes.
Furthermore, we have shown that efficient programming demands a subtle tradeoff
between exploiting parallelism (particularly at a fine grainsize) and the reduction on
running time potentially achieved by exploiting parallelism. Thus, we believe that fine
and medium grained parallelism must be controlled in an automated fashion. We are
developing techniques for doing this using both conventional languages and using a
single-assignment language with large amounts of implicit parallelism. (The latter work
is largely supported by the National Science Foundation.)

Our work on single-assignment languages concentrates on Sisal. In earlier work we
developed an automatic partitioning system based on machine and application
characteristics and capable of dealing with a wide range of shared and nonshared
memory machines. Recent work has concentrated on efficient compilation of these
languages to make them competitive with conventional languages [Gharachorloo 88],
[Gopinath 88] and also on actually implementing the partitioning system for real
hardware. This latter effort has produced some impressive early results on speed-up.

Staff: A. Agarwal, A. Gupta, A. Tucker, J. Hennessy, H. Davis

September 1987 - March 1988

. ^i . rt \r* \~i. '. r^ \ n* \ r-*. ■

3 Computer-Aided Design (CAD) Tools

3.1 Synthesis

For the past several months we have been working on a system for high level synthesis
of digital hardware called HERCULES [De Michel! 88]. We envision synthesis as
consisting of two phases: behavioral synthesis which involves structurally independent
optimizations, and structural synthesis which transforms a behavior into a structure
which may be implemented. HERCULES transforms the behavioral specification of
hardware in the form of C-like programming description through a series of abstractions,
with the final result being a logic implementation of the hardware. At each level of
abstraction, optimizing transformations are performed which will allow an exploration of
the design space available to the designer.

We address the hardware description problem, along with the abstractions and
transformations for synthesis. In particular, we developed a method called the
Reference Stack that may be used during behavioral synthesis to resolve conditional
assignment, multiple assignment, variable and constant unfolding, and elimination of
cycles for assignments to local variables. We also describe control in terms of a
sequencing graph that supports multiple threads of control to be active simultaneously.
Several benchmark examples from the High Level Synthesis Workshop held in January
1988 on Orcas Island, Washington is passed through the system: MC6502, Intel8251,
and FRISC, a 16-bit RISC type microprocessor. HERCULES is implemented in C on
UNIX. There are approximately 23,000 lines of code in the implementation.

3.1.1 Hardware Synthesis

We devised a behavioral modeling language called ILSP. The ILSP compiler has been
written and is operational. The synthesis system displays the data/control flow graph
extracted from a functional model on the window screen. We are currently working on
resource optimization.

3.2 Simulation

Simulation now requires vast amounts of cpu time. This seveiiy limits the size of a
design that can be tested thoroughly. Incremental and parallel simulation are possible
solutions to these current limits. We are investigating the performance of parallel and
incremental diyital simulation. Specific synthesis and analysis tools are also proposed.

3.2.1 Incremental Simulation

We proposed two incremental simulation algorithms, the incremental-in-space and
incremental-in-time algorithms, and implemented them in our THOR simulation system.

September 1987 - March 1988

The incremental-in-space algorithm simulates the circuit components affected by design
changes since the previous simulation [Hwang 88]. The incremental-in-time [Choi
88] algorithm simulates a circuit component only for the simulation time frames when its
inputs make different state transitions from the previous simulation run, maximally
utilizing the past history of simulation thus reducing the number of component
evaluations to a minimum. Both algorithms are found efficient, showing up to 30x
speedups over conventional event-driven simulation. These two algorithms are
comparable to each other: one shows better performance for some circuits over the
other, depending on the circuit structure and topology of the circuit under simulation.

3.2.2 Parallel Simulation Study

Two parallel algorithms for logic simulation have been developed and implemented on a
general purpose shared-memory parallel machine. The first algorithm is a synchronous
version of a traditional event-driven algorithm which achieves speed-ups of 4 to 6 with 8
processors. The second algorithm that has been developed is new and totally
asynchronous [Soule 88]. There are no synchronization locks or barriers between
processors and the problems of massive state storage and deadlock have been
eliminated. This allows the processors to work independently at their own speed on
different elements and at different times.

Staff: G. De Michel!, D. Ku, S.Y. Hwang, T. Blank

3.3 Power and Gnd Noise

We have developed a system called Ariel for analyzing voltage drops and current
density in the power networks of CMOS VLSI circuits. Three main parts, a Magic-based
resistance extractor, a Rsim-based current simulator, and a network analyzer, work in
tandem to examine the current/voltage characteristics of the power networks with a
minimum of manual effort from the designer [Stark 88].

Ariel gets its resistor networks from Magic's resistance extractor, which uses a simple
version of polygonal reduction. The extractor calculates resistance by counting the
number of squares between two connection points in a region and multiplying by the
sheet resistance. To find the currents that flow in the power supplies, Ariel uses RSIM to
find which nodes change, the time-constant for each change, and which transistor is
driving the node. The information on the current is then feed into a third program that
calculates the voltages on power supplies. This program first breaks the loops in the
power nets to make them into trees. Although this only approximates the actual voltage
drop, it is guaranteed to be conservative and drastically reduces the time needed to
determine the voltage on the power buses.

Staff: M. Horowitz, D. Stark

September 1987 - March 1988

^..^ Hr-'TL.^ ^.n **r ^. v. ■■- "v ^ "- -v ^- -w -w -»

3.4 Placement and Routing with Parallel Processing

The Locus Project is concerned with achieving better quality automatic layout of
integrated circuits by making use of the increased computational power of
multiprocessors. This work is primarily supported by a Center for Integrated Systems
seed grant, and partially by DARPA. The basic idea is to get better placement quality
by using the actual routing as the measure of goodness for each potential placement.
Routing itself is a computationally intensive task; hence the neec for multiprocessors.

The first step of the Locus Project is nearing completion: the program LocusRoute, a
parallel global router for standard cells has been developed [Rose 88a], [Rose 88b],
[Rose 88c]. It achieves parallelism along three orthogonal "axes" of parallelism: routing

several wires at once, routing segments of a wire in parallel, and dividing up the
potential routes of a segment among different prouessors to be evaluated. The
implementation of two of these approaches achieve significant speedup: wire-by-wire
parallelism attains speedups from 6.9 to 13.6 using sixteen processors, and route-by-
route achieves up to 4.6 using eight processors. When combined, these approaches
can potentially provide speedups of as much as 55 times.

Some work related to placement optimization has also been done. We have
investigated the equilibrium dynamics of Simulated Annealing-based placement
optimization, and developed a reliable method for "measuring" the "temperature" [Rose
88d] of a placement. This method can be used to determine the starting temperature in
placement systems that switch from a non-annealing based strategy to an annealing-
based one.

Staff: J. Rose, J. Hennessy

September 1987 - March 1988

. *"\. .v\. ic» tTu mj «ru m-^ ir^. »r.* ■ -j n^j »TL P« ^ «r» «r-^ »-_ *-•■■■■-•.. • ^ * • ■ * " .

4 VLSI

Our work on VLSI has been focused on new circuit structures that might be useful for
future high-speed processors / floating-point units. In this effort we are exploring
BiCMOS as well as MOS designs.

4.1 RAM Design

We have been experimenting with both very high speed and high density RAM design.
In high speed RAMs we have designed, fabricated, and tested a 3.5ns 4K bit ECL I/O
BiCMOS sRAM. [Yang 88] The design uses a novel memory cell that contains a bipolar
transistor along with a CMOS latch. The bipolar transistor's collector is connected to
the nwell so it occupies very little space; the cell is only 30% larger than a standard 6T
cell. Using only small swing bipolar logic in the access path provides the fast access
time. The cell also has independent read and write ports allowing simultaneous read
and write operations. The device was fabricated at IDT on a 1.5u BiCMOS technology.

In high density RAMs we have designed, fabricated and tested a 16K dRAM using a IT
RAM cell. The memory uses a relatively large cell {.1pf, and 19x14 lambda) but is still
about 3-4 times denser than a 6T design. The cell should be scalable down to a 1.2u
technology without major change. Scaling from 2u to 1.6u leaves the cell capacitance
roughly unchanged because of the large change in gate oxide thickness (40nm ->
25nm) The memory has an access time of 22ns (RT) and a cycle time a little over 30ns
in a 2u technology. A conservative design approach was used, there are no
bootstrapped nodes, and the timing chain is self-timed whenever possible. The net
result is an access time that is slower than it could be, but is quite robust. We have
tested the noise margins by adjusting the voltage on the dummy cell and have found
that the memory has large noise margins. We are now planning to write a module
generator for dRAMs so they can be used on other chips.

Staff: M. Horowitz, R. Kao, T.S. Yang

4.2 BiCMOS

We are ramping up our effort to design circuits in high-performance BiCMOS and
bipolar technologies. We have already designed a 3.5ns BiCMOS sRAM and have a
few adder circuits in fabrication. To drive the design process we have started looking at
the design of a high-performance floating point unit. Our goal is to build a co-processor
capable of running at 100MHz and starting a new add or multiply every cycle. With this
goal in mind we are beginning to look at building the major blocks that this chip requires:
multiplier, adder, shifter, control logic, registerfile, bus drivers, latches and control logic.

To support this design effort we have begun working on a set of CAD tools to support
bipolar and BiCMOS design. We were able to modify the Magic layout system to
support bipolar devices, and now have a number of different BiCMOS technology files.

September 1987 - March 1988 8

^\ w-_ .r. «-^ w-^ T* "• * " ^ ^ ^ *-)<.i ic ■.^,- >■-- ^. «v, ^r \r v .rv'.rw 'JV irk^jTf L"w L/* ^u^ -^ J^U* M^ .« ^ *"*»*■» k^ *' w ^ jrf - «■• M ^ .* "..x •" > ~.J« -J« .* ^J* r** ^** r

Unfortunately almost all of the simulation tools can't deal with the resulting simulation
file, so the BiCMOS RAM was the first chip in a number of years that was not "switch"
simulated before fabrication. We had simulated the pieces of the design using SPICE,
but were not able to simulate the entire chip. To fill this hole we are working on a
BiCMOS simulator, and have a prototype running. The simulator can now handle
bipolar circuits and we plan to extend it to handle BiCMOS circuits later this year.

Staff: M. Horowitz, R. Kao, R. Alverson, D. Stark, D. Wingard

4.3 Multiplication

The demand for high performance floating point coprocessors has created a need for
high-speed, small-area multipliers. Array multipliers achieve the highest performance
but have a large silicon cost, while shift and add multipliers require very little hardware
but have lower performance. We have used an iterative partial tree structure to provide
a high-performance, small-area multiplier [Santoro 88]. The clock is generated
internally and is set to match the delay through two carry-save adders and a latch. To
complete a 64x64 multiply requires only seven clocks, and a new multiply can be
started after 4 clocks. The 1 .6ü parts clock at over 80MHz.

Staff: M. Horowitz, M. Santoro

4.4 Single-Chip Testers

We have completed the testing of our high performance CMOS pin electronics. This
circuit has been fabricated in a 2u technology and is able to generate outputs to drive
the DUT with about .5ns resolution. The chip can generate all the needed formats (NRZ
RZ RO RT RC) and can drive the output to either of two high and two low levels. For
measurement of the DUT outputs, the chip contains an analog comparator that is
sampled at the user specified time [Gasbarro 88].

We will use this pin electronics design in the design of a single chip tester that will be
sent out for fabrication this year. Each chip can drive 16 DUT pins at over 30MVecs/s
with edge resolution on each pin of about .5ns. The chip contains a dRAM for vector
storage (40Kbits) and a decompressor that allows the chip to effectively store about 10K
vectors/pin. The chip has a simple asynchronous interface that allows it to be attached
to a number of different buses, and only requires 70 pins. Using these chips, it should
be possible to build an IMS class tester (or better) using only 8 chips. Also since the
test electronics are so small they can be located very close to the DUT thus eliminating
the problem with cables and reflections.

Staff: M. Horowitz, J. Gasbarro

September 1987 ■ March 1988

[Agarwal 88a]

[Agarwal 88b]

[Agarwal 88c]

[Choi 88]

References

Agarwal, A., Sites, R.
MultiprocesFor Address Tracing and Characterization Using ATUM.
In 15th International Symposium on Computer Architecture.

IEEE/ACM, Honolulu, HI, June, 1988.
To appear.

Agarwal, A., Gupta, A.
Memory-Reference Characteristics of Multiprocessor Applications

under MACH.
In SIGMETRICS. IEEE, 1988.
To appear.

Agarwal, A., Simoni, R., Hennessy, J., Horowitz, M.
Scaleable Directory Schemes for Cache Consistency.
In 15th International Symposium on Computer Architecture. IEEE,

Honolulu, HI, June, 1988.
To appear.

Choi, K., Hwang, S.Y., Blank, T.
Incremental-in-Time Algorithm for Digital Simulation.
In 25th Design Automation Conference. IEEE/ACM, Anaheim, CA,

June, 1988.
To appear.

Davis, H., Hennessy, J.
Characterizing the Synchronization Behavior of Parallel Programs.
In Sym. on Parallel Programming: Experience with Applications,

Languages and Systems. ACM , New Haven, CT, July, 1988.
To appear.

De Micheli, G., Ku, D.
HERCULES - A System for High-Level Synthesis.
In Design Automation Conference. IEEE/ACM, Anaheim, CA, June,

1988.
To appear.

Gasbarro, J., Horowitz, M.
Integrated Pin Electronics for VLSI Functional Testers.
In Custom Integrated Circuits Conference. IEEE, Rochester, NY,

May, 1988.
To appear.

[Gharachorloo 88] Gharachorloo, K., Sarkar, V., Hennessy, J.
A Simple and Efficient Implementation Approach for Single

Assignment Languages.
In Lisp and Functinal Programming Conference. ACM, Salt Lake

City, UT, July, 1988.
To appear.

[Davis 88]

[De Micheli 88]

[Gasbarro 88]

September 1987 - March 1988 10

[Gopinath 88] Gopinath, K.
Copy Elimination with Abstract Interpretation.
Computer Science Department Classic 87-17, Stanford University,

February, 1988.

[Gupta 88] Gupta, A., Tucker, A.
Exploiting Variable Grain Parallelism at Runtime.
In Sym. on Parallel Programming: Experience with Applications,

Languages, and Systems. ACM, New Haven, CT, July, 1988.
To appear.

[Hwang 88] Hwang, S.Y., Blank, T., Choi, K.
Fast Functional Simulation: An Incremental Approach.
IEEE Trans, on Computer-Aided Design of Integrated Circuits and

Systems, July, 1988. - -
To be published.

[Prz^ bylski 88] Przybylski, S., Horowitz, M., Hennessy, J.
Performance Effects in Memory Hierarchy Design.
In 15th International Symposium on Computer Architecture. IEEE,

Honolulu, HI, June, 1988.
To appear.

[Rose 88a] Rose, J.S.
The Parallel Decomposition and Implementation of an Integrated

Circuit Global Router.
In Slgplan Symposium on Parallel Programming. ACM, New Haven,

CT, July, 1938.
To appear.

[Rose 88b] Rose, J.S.
LocusRoute: A Parallel Global Router for Standard Cells.
In 25th Design Automation Conference. IEEE/ACM, Anaheim, CA,

June, 1988.
To appear.

[Rose 88c] Rose, J.S.
LocusRoute: A Parallel Global Router for Standard Cells.
In Workshop on Placement and Routing. MCNC, Atlanta, GA, May,

1988.
To appear.

[Rose 88d] Rose, J.S., Klebsch, W., Wolf, J.
Equilibrium Detection and Temperature Measurement of Simulated

Annealing Placements
In Workshop on Placement and Routing. MCNC, Atlanta, GA, May,

1988.
To appear.

September 1987 - March 1988 11

[Santoro 88] Santoro, M., Horowitz, M.
A Pipelined 64x64b Iterative Array Multiplier.
In International Solid-State Circuits Conference. IEEE, San

Francisco, CA, February, 1988.

[Soule 88] Soule, L, Blank, T.
Parallel Logic Simulation on General Purpose Machines.
In 25th Design Automation Conference. IEEE/ACM, Anahelm, CA,

June, 1988.
To appear.

[Stark 88] Stark, D., Horowitz, M.
Analyzing CMOS Power Supply Networks using Ariel.
In 25th Design Automation Conference. IEEE/ACM, Anaheim, CA,

June, 1988.
To appear.

[Yang 88] Yang, T„ Horowitz, M., Wooley, B.
A 4ns 4kxl Two-Port BiCMOS SRAM.
In Custom Integrated Circuits Conference. IEEE, Rochester, NY,

May, 1988.
To appear.

September 1987 - March 1988 12

A 4 nsec 4Kxlbit Two-Port BiCMOS SRAM

T.S. Yang, M.A. Horowitz, and B.A. Wooley

Center for Integrated Systems, Stanford University
Stanford, California 94305

ABSTRACT

This paper introduces a two-port BiCMOS static mem-
ory cell that combines ECL level word-line voltage swings and
emitter-follower bit line coupling with a static CMOS latch
to achieve access times comparable to those of high-speed
bipolar SRAM's, while preserving the high density and low
power of CMOS memory arrays. The memory can be ac-
cessed for read and write independently and simultaneously,
making it especially attractive for the design of video, cache
and other application-specific memories. An experimental
4Kxlbit two-port memory integrated in a 1.5/jm-5GHz BiC-
MOS technology exhibits a read access time of 4 nsec and a
power dissipation of 550 mW.

INTRODUCTION

The highest speed static memories have generally been
realized using advanced bipolar technologies. However, the
large cell area and standby power dissipation have precluded
the scaling of these circuits to increasingly higher levels of
integration. Recently, BiCMOS technology has been used
to significantly enhance the speed of CMOS static memoiy
arrays. Most BiCMOS SRAM's described to date combine
conventional CMOS cells with the use of'sipolar transistors in
the sense amplifiers and for driving large capacitive loads1,2.
In these designs, the access time remains limited by factors
such as the large voltage swing on the word lines, ihe limited
cell output current and the number of circuit stages used3.

In addition to access time itself, simultaneous multiport
access capability is becoming an increasingly important fea-
ture of high-speed static memories. However, conventional
multiport designs typically have both a large cell area and
relatively slow access.

This paper introduces a BiCMOS two-port static memory
cell, and associated access circuitry, with which it is possible
to achieve access times comparable to those of high-speed
bipolar SRAM's while retaining the high density and low
power of CMOS memory arrays. The cell, referred to as a
CMOS Storage Emitter Access (CSEA) cell, combines ECL
level word-line voltage swings and emitter-follower bit line
coupling with a static CMOS latch. Compared with conven-
tional multiport memory designs, the CSEA memory offers

' Thi« roearch was supported in part by a fellowship from IBM and
by DARPA under Contract No. MDA903-JI3-C0335

extremely high speed and small size together with the inde-
pendent read and write access capability, making it especially
attractive for multiport memory designs such as video, cache
and other application-specific memories. To demonstrate the
operation of the cell, a complete 4Kxlbit two-port SRAM
has been designed and integrated in a l.S^im BiCMOS tech-
nology. The memory operates from a single 5.2V supply with
ECL-compatible I/O. A typical read access time of 4 nsec at
a power dissipation of 550 mW was achieved in the initial
prototypes.

BiCMOS CSEA MEMORY CELL

The schematic of the CSEA memory cell and its associ-
ated bit line sensing circuit is shown in Figure 1. In the CSEA
memory, a small word-line swing of only 550 m V and emitter-
follower coupling to the bit line are adopted to minimize the
wird-line delay and increase the bit-line charging current. A
stitic CMOS latch is retained to reduce the standby power
«.onsumption of the array. In Figure 1, the REAP ord line
(RWL) serves as the positive supply for the cell's internal
CMOS latch, and the cell is read by raising this word line.
When a high output is stored in the cell, the increase in
RWL is coupled directly through M2 to the base of the out-
put emitte'-follower, Q6, which forms a differential pair with
the sense amplifier input transistor, Q7. For a low output
stored in the cell, Q6 is turned off by M4 and the bit line
current, IBL. i« switched to flow through Q7. The cell is
written through the pass transistor M5, which is controlled
by the WRITE word line. Full CMOS logic levels are used
on both the WRITE bit line (WBL) and the WRITE word
line (WWL). As a consequence of the single-ended write, care
must be taken to avoid disturbing the unselected cells in the
row where the WRITE word line is selected. Such write dis-
turbances are avoided by biasing the unselected WRITE bit
lines at a level close to the logic threshold of the M2-M4 latch
inverter when the READ word line is at its low level.

The area of the CSEA cell is approximately 35% larger
than that of a 6-transistor CMOS cell implemented using
the same layout rules and design style. The increased area
is due primarily to the independent read and write ports,
which preclude the sharing of signal lines among adjacent
rows and columns. However, the CSEA cell is comparable to
other single-ended memory cells4 and is much smaller than
conventional multiport cells using differential bit lines.

MEMORY ARCHITECTURE

The block diagram of a 4K'bit two-port CSEA memory
is shown in Figure 2. The memory is organized as a 64-row
by 64-columns array. The array is controlled by 64 WRITE
row decoders, 64 WRITE column switches, 64 READ row de-
coders and 32 READ column switches. Each READ column
switch selects two READ bit lines and the data are multi-
plexed at the output buffer by the least significant bit of the
READ address. Two sets of address inputs, one for read and
the other for write, are available externally thereby allowing
direct access to the rt^d and write ports of the CSEA cell ar-
ray. The separate data input and output paths offer improved
system performance by eliminating the need for multiplexing
the data bus, thus reducing the I/O delay in the critical path.

Since the loading a cell imposes on its READ word line
depends both on the data stored in the cell and on whether
or not the cell is being written, the READ word and bit lines
are laid out orthogonal to the WRITE bit and word lines, re-
spectively. Therefore, RWL parallels WBL, and the sekxted
word line is loaded by only a single cell with an active WRITE
word line. This arrangement serves to minimize write con-
dition interference with the read operation. Finally, in order
to isolate power supply coupling and reduce switching noise,
the read path, comprised mainly of small-swing ECL circuits,
and the write path, consisting of CMOS logic, are powered
through separate pads.

CIRCUIT DESIGN

A schematic of the READ path is given in Figure 3. Selec-
tion of the READ word line (RWL) is accomplished entirely
with current-switching ECL circuits operating at low volt-
age swings. The logic levels in these circuits are established
by means of an on-chip, supply-compensated bandgap ref-
erence. Push-pull address input buffers are used to provide
fast transitions at the input to the row decoders, and the de-
coding is accomplished using diode decoders. The word lines
are driven by Darlington emitter-followers tied through resis-
tors to a common pull-down current. The active pull-down
current available to discharge a deselected word line is 7mA,
while a static pull-down current of 125/iA is maintained in
each of the unselected word lines. To ensure that the bit line
reference tracks the high RWL level in the selected cell, the
level of the selected word line is monitored with a wired-OR
of emitter-followers driven by each of the word lines.

The schematic of the WHITE path is shown in Figure
4 and is similar to that of conventional BiCMOS SRAM's2.
WRITE address decoding is accomplished by means of dy-
namic series decoders that are clocked by the write enable
signal. The unselected WRITE bit lines are biased at the
voltage level of the internal latch threshold, Vwbif; this refer-
ence is generated from the common pull-down current source
in the read path.

EXPERIMENTAL PERFORMANCE

A die photo of the complete 4Kxlbit two-port memory is
shown in Figure 5; the die size is 2.5mmx3.5mm. The per-

formance of the prototype memory ii summarized in Table I.
Shown in Figure 6 ii an otcillograph of a typical read acce««
at room temperature with a power dissipation of 550 mW.
The access time is 4 nsec. At 100oC case temperature the
measured worst case read access time is 6 nsec and the power
dissipation is 750 mW.

The independent read/write capability is illustrated in
Figure 7, where the memory is read and written simultane-
ously. Additional measurements have shown little data de-
pendency in the read access time and no interference between
read and write operations. The setup and hold times of the
write address signals with respect to the write enable pulses
are less than 1 nsec, and the minimum write enable pulse
width is 4 nsec; thus a write cycle time of less than 6 nsec can
be achieved. This suggests that the memory can be cycled
at a rate close to 200 MHz. Since most of the power in the
memory is dissipated in the peripheral circuits, a 16Kbit two-
port SRAM implemented using the same circuit techniques
and technology is projected to have a typical read access time
of 4.5 nsec with a power dissipation of 750 mW.

ACKNOWLEDGEMENTS

The authors wish to thank Integrated Device Technology,
Inc. for fabricating the circuits. They are especially grateful
to F. C. Hsu and C. C. Wu of IDT for numerous helpful
discussi ns. They are also indebted to J. B. Kuo and R. W.
Dutton of Stanford, who provided the initial inspiration for
this project.

REFERENCES

1 Jiiii-Ichi Miyamoto, et. al., "A High-Speed 64K CMOS
RAM with Bipciar Sense Amplifier", IEEE J. of Solid-State
Circuits,Vol. SC-19; No. 5, p. 557-563; Oct., 1986.

2 Katsumi Oguie, et. aJ., u64-kbit ECL RAM Using HI-
BICMOS Technology", IEEE J. of Solid-SUte Circuits,Vol.
SC-21; No. 5, p. 681-985; Oct., 1986.

3 Takakuni Douseki and Yasuo Ohmori, "BiCMOS Cir-
cuit Technology for A High Speed SRAM", Symp. on VLSI
Circuits Digest of Technical Papers, p. 77-78; May, 1987.

4 Kevin J. O'Connor, "The Twin-Port Memory Cell",
IEEE J. of Soiid-State Circuits, Vol. SC-22; No. 5, p.712-720;
Oct., 1987.

Technology- 1.5/im, 5GHz BiCMOS
Cell Size 26/im x 25/im
Chip Size 2.5mm x 3.5mm
Configuration 4KxlBit 2-port
I/O Interface ECL 10K compatible
Power Supply -5.2 Volte
Power Consumption 550 mW
Read Access Time 4.0 ns
Minimum Write Pulse 4.0 ns

Table I: Performance nummary of the 4Kbit CSEA Memory

HEAD WOWp IJNE (RWL) MAO X «Mr WWTt Y AMr

ECL
Add But

READ
Row D*c

WRtTE
Row D»c

T I
READ

Word Lin«
WRtTE

Word Lin*

CSEA ARRAY

READ
Bit Llm

WRITE
Bit Lina

San
Ampllfl

READ
Col Doc liriar

-Cr3
>utput A
ux/But ^

rrj.
WRITE

Col Dae

Writ. EnaMa

ECU CMOS
XHIor

Output
Mil KB

r
ECL

Add But
ECL CMOS

Xlalor

Data Out READ
] \
V Addr WRITE X

ECL/CHOS
Xlalor

WRITE X Addr

Figure 1: CSEA cell and associated bit line sensing cir-
cuit.

Figure 2: Block diagram for 4Kbit two-port CSEA
memory.

{

AX0-5fc

ll (

READ Row Deco<J»r

ECL Addr Buf

READ Word Line

Data
Output I 0"!

Mux/Buf T

F:.gure 3: Circuit schematic of the READ path.

-OT^1

WRITE Col Decoder

<&-]
c

5 T"
•xo-s WRITE DATA Vwblf

Figure 4: Circuit schematic of the WRITE path.

Figure 5: Die photo of the 4Kbit CSEA memory.

Figure 6: Oscillograph of measured READ access time.. Figure 7: Oscillograph showing independent READ and
WRITE memory accesses.

LocusRoute: A Parallel Global Router for Standard Cells

Jonathan Rose
Computer Systems Laboratory
Center for Integrated Systems

Stanford University, Stanford CA 94305

Abstract

A fast and easily parallelizable global routing algonlhm for standard
cells and its parallel implementation is presented. LocusRoute is meant
to be used as the cost function for a placement algorithm and so this
context constrains the structure of the global routing algonlhm and its
parallel implementation. The roulrr is based on enumerating a subset of
all two-bend routes between two pointi, and results in 169c to 379c fewer
tout number of tracks than the Timber>Volf global router for standard
cells (Sech85]. It is comparable in quajity to a maze router and an
industrial router, but is factor of 10 times or more faster. Three
approaches to parallelizing the router are implemented: wire-by-wire
parallelism, segment-by-segment and route-bv-route. Two of these
approaches achieve significant speedup - route-by-route achieves up to
4.6 using eight processor, and wire-by-wire achieves from 5.8 to 7.6 on
eight processors.

1 Introduction

The best way to evaluate a given placement of circuit modules is to
route it and determine the final area. Since routing is a time-consuming
task typical placement algorithms [Hana72,Breu77] me other metnes
such as total wire length or crossing counts thai are easier to calculate.
The advent of usable commercial multiprocessors is leading us to
consider using more compute-intensive cost functions i/efficient parallel
algorithms can be developed. The aim of the Locus Project is to
integrate placement and routing into one opümization process, and to do
this by using multiprocessing to increase the speed of the routing.

This paper presenu the first step in the Locus Project: LocusRoute,
a new global routing algorithm for standard cells, and its parallel
implrmentation. Our goal is to make the average routing time for one net
close to the time that it takes to recalculate more conventional cost
functions such as that used in the TimbcrWolf (Sech85] Simulated
Annealing algorithm. The intention is for the global router to be
invoked to rip-up and re-route w>res whose end points have changed
when one or more cells are moved in an iterative improvement
placement scheme. This means that routing time must be about one to
five milliseconds per net on a VAX 11/780-class machine.

The routing performance of LocusRoute, as measured by total
number of routing tracks, is beoer than that of TimbcrWolf [SechSS] and
comparable to a maze router and an industrial router. It is fast because it
investigates only a subset of two-bend routes between paire of pins to be
routed. The routing speed is increased further by parallelizing the
algorithm in three ways: routing several wires at once, routing «everal
two-point segments simultaneously, and evaluating possible two-bend
routes in parallel. The wire-by-wire parallel approach achieves speedups
ranging from 5.8 to 7.6 using 8 processors. The route-by-route approach
achieves speedups of up to 4.6 using 8 processors. Since these two
"axes" of parallelism are orthogonal to e^h other, their respective
speedups will multiply.

This paper is organized as follows: Section 2 reviews related work.
Section 3 defines the problem of global routing and gives our routing
model. Section 4 desenbes the LocusRoute algorithm and compare- it to
other routers. Section 5 presents three approaches for speeding up the
new router using parallel processing, and performance results.

2 Related Work

Previous work on parallel routing [Breu81, Blsn81, Rute84, and
many others] has generally focused on a fixed hardware mapping for the
Lee routing algorithm fLee61]. As such they lack the flexibility that is
required ir. practical CAD software such as the global router described in
[Kamb85]. Another drawback of special hardware for the Lee algorithm
is that a uniprocessor implementation can be made very efficient using
special software data structures that cannot be put easily into fixed
hardware. A more flexible approach is to use general purpose parallel
processore, which can be adapted to many applications. Using the
flexibility of a general purpose multiprocessor, several "axes" of
parallelism can be exploited. If these axes are orthogonal to each other
then when used together they can provide significant speedup. Two
approaches to parallelizing an algorithm are said to be orthogonal if,
when used together, the resulting speedup is the product of the speedup
of the individual methods.

3 Problem Definition and Routing Model

Global routing for standard cells first decides for each group of
electrically equivalent pins (pin clusters) which of those pins are actually
to be connected. Second, if there is no path between channels when one
is required, it must decide either which built-in feedthiough to use or
where to insert a feedthrough cell. Lastly, it must determine the channel
to use in routing from a pad into the core cells.

In this discussion of global routing there will be no differentiation
between feedthrough cells and built-in feedthroughs ■ they are referred to
jointly as vertical hops. The decision to insert a feedthrough cell or use
a built-in feedthrough is deferred to a post-processing step. This does
result in some inaccuracy in the track count However, using this
approximation (and the routing algorithm to be described) the 904-wire
Primary 1 circuit from the standard cell benchmark suite (Prea87] global
routed to 249 tracks, using 995 vertical hops. The actual, post-process
track count using 10 feedthrough cells and 985 built-ins was 253, only
1.6% more tracks. For the 3029-wire Primary2 circuit with 3424 vertical
hops (287 feedthroughs, 3137 built-ins) the approximate track count was
546 and the post-process count was 590, an increase of 8%.

The usual objective of a global router is to minimize the sum of the
channel densities of all the channels (hereafter called the total density).
It is important to note that the total density can be traded off with the
number of vertical hops, so to compare the total density of two global
routings fairly they should both use the same number of vertical hops.

i : M : : 1
r.h*nr-, ä

INI ! i ■; -r:

i i , ; i II i
CMnn» J

11 II: I 1 p
Chvma l

SUnwo C1 PUomax

-

CBinS

Clan 3

Cn«n2

Chan 1

Coi(A/ri^ R»of»»»mjlon

Figure 1 - Routing Model

3.1 Routing Model

All of the rouiing algorithms discussed here are based on the same

routing model: Each possible routing position in a channel (also called
routing grid of that channel) is repre>,enlcd as one element of an array as

shown in Figure I. The array, called the Cost Array; has a vertical

dimension of the number of rows plus one, and a horizontal dimension

of the width of the placement in routing grids. Each element of the Cost
Array conuins two values: H,j and Vy. H,j contains the number of of

wire routes that pass horizontally through the grid at channel i in

position ;. Vly is the cost, assigned by parameter, of traversing a row in

travelling from channel i to channel i + 1 at grid position ;, A wire is

represented as a list of (i ,;) pairs of locations in the Cost Array,
corresponding to the locations of pins to be joined.

The objective is to find a minimum-cost path for each wire. The

wire's cost is given by the sum of all of the Hy «nd V.y that it traverses.

After a path is found for a wire that goes through location {i ,j) its
presence is recorded in the Cost Array (the appropriate //,, and V,^ «re

incremented) so that subsequent wires can lake it into account. The

more wires going through a particular location m a channel, the less
likely it is that area will be used. Note that in this model the total

density is not directly minimized, but rather a combination of average
density and wire length.

4 The LocusRoute Algorithm

In this section the uniprocessor LocusRoute algorithm is described,
and a performance comparison with other routers is given. There are
five steps in the LocusRoute global routing algorithm:

1. A multi-point wire is decomposed into two-point segments, using

Kruskal's algorithm [Krus56]. This algorilhm has running time

0(n2) in the number of pin clusters. The effect of the sub-
optuntlity of this decomposition is discussed in section 4.4 below.

2. The segments are further decomposed, if necessary, into

permutations, which are the set of possible routes between e«:h pin
in a pin cluster.

3. A low-cost path in the Cost Array is found for each permutation by

evaluating a subset of the two-bend routes between each pin pair.

The permutation with the best cost is selected as the route for that
segment.

4. Traceback. This step joins «11 the segments back together, «nd

assigns unique numbers to di-.tincl segments of the same wire in
each channel. This is so that a channel router can distinguish

between two segments «nd will not inadvertently join them together.

5. Wire lay down. The presence of the newly routed wire is put into

the Cost Array by incrementing the array elements where the new

wire resides. Once there, other wires can lake it into account.

The details of the second and third steps are described in the following

sections. The first and last two are simple enough that the above
description suffices.

4,1 Decomposition Into Permutations

Each two-point segment consists of pairs of pin clusters that contain

electrically equivalent pins. The LocusRoute algorithm considers routes
between every pin in one cluster and every pm in the other cluster. Each

such route is called t permuialton. Figure 2 illustrates three of the four

possible permutations between clusters A and B, which have two pins

each. The four possible permuutions arc: (A ,,/>]), (A i.fii), (4 2.Ü i)

. (^Z'^i)- If clusters A and B «re separated by only a short horizontal

distance, then the (A^.B^) permutation is most likely the least-cost path

of the four. If the horizontal distance is large then it is possible that any

one of the four permutations could have the low-cost path, and hence all
should be investigated. This has been confirmed experimentally, and a

constant honzontal separation (300 routing grids) has been determined

beyond which total density will unprove if all four permutations are
evaluated.

Slandard Call Rows

Pm Cluster

1

j Cluster B

T -J2

ClLer/

Rout« Pemutation A2 ■> B2

Figure 2 - Permutation Decomposition of Segment

4.2 Route Enumeration

The LocusRoute algorithm searches for « low-cost p«th for «

permutation by enumerating a number of different routes. The ide« is to

ev«luate the cost of « subset of «II two-bend routes between the two pins,
«nd then choose the one with the lowest cost Generation of two-bend

routes .is discussed in [Ng86). Figure 3 illustrates three possible two-

bend (or lest) routes inside « representation of the Cost Array as a small
example.

If the honzontal distance between the two pins is H routing grids,
«nd the vertical difference it C channels then the total number of two-

bend routes a C + H. A parameter, called the two bend percent (TBP)

dicutes the percenuge of the total number possible two-bend routes to
be evaluated. Thus the total number of routes evaluated is given by

/i AJI H.n mn R.r

-

TjTTMT'
ii

TtiJ

-It I
• r

....—... .
i r

' 1' ■ L

I

JI|4 U-Ji

(a) (b) (c)

Figure 3 - Sample Two-Bend Routes

The pnority order of the routes evaluated (when TBP Is less than
100) is as follows: first all pnncipally horizontal routes (those with
bends only at the left and right extremes) are evaluated Then the
principally vertical routes (those with bends at the upper and lower
extremes) are evaluated. Honzonta] routes are evaluated first because it
is importani that all of the potential channels for the route be examined
at least once. Within the horuonui and vertical groups, routes are
searched in bisection order, i.e. if the limits of the group span are

normalize to [0,1] then the routes are priori ü zed isO.l.i-.X.-T.-r,

and so on.

The two-bend evaluation approach was calibrated against a least-
cost path maze router between the two points. Note that both routers arc
not allowed to go beyond the bounding box of the two end points of the
segment This is different than comparing against a maze router for
multipoint wires since that is a less constrained problem and the maze
router will have more success, as discussed in Section 4.4.
Experimentally, it was determined that a TBP of 20% would result in a
path as good as that found by the maze router, as compared on the basis
of total density for the entire circuit. On all of the test circuits used in
the experiments discussed in the section 4.4, the LocusRoute router's
total density was within 2% of that obtained by the two-point maze
router, with one exception of 3.3%. Most of the differences were below
1%. This is surprising m that the maze router looks for not only two-
bend routes but for three or more bend routes. It implies that two-bend
routes provide a sufficiently nch route set for the standard cell routing
problem.

4.3 Iteration

The LocusRoute algorithm makes use of a general iterative
technique in the manner described in [Nair87]. Briefly, this means that
after the first time all wires are routed, each is sequentially ripped up
from the Cost Array and then re-routed. By routing each wire several
times (typically four is sufficient), the wire order-dependency is reduced
and the final answer is improved by five to ten percent. Also - of benefit
to the end-purpose of integrated placement and routing - the nature of
iteration is similar to the placement environment in which wires «re
ripped up and re-routed many times.

4.4 Uniprocessor Performance Results

7>iis section compares the quality and execution lime of LocusRoute
with other routers.

Table 1 shows a comparison between the LocusRoute global router
and the Tur.berWolf [Sech85] global router for several industrial
circuits. These circuits are from several sources: The standard cell
Benchmark suite (Primaryl, Pnmary2, Test06 (Prea87]), Bell-Northern
Research Ltd. (BNRA->BNRE), and the University of Toronto
Microelectronic Development Centre (MDQ. The placement for all of
the circuits was done by the ALTOR standard cell placement program
[Rose«5, Rose88]. The TunberWolf version used was TimhirWolf 4.1,
obtained in July 1987. LocusRoute shows significantly better total
density than does the T imberWolf global router, ranging from 16% to
37% fewer tracks. The principal reason is that thu TunberWolf global
router is constrained to use only the minimum number of vertical hops,
whereas LocusRoute uses considerably more. This is a reasonable
practice in current technology because many standard cells contain
"free" built-in feedthroughs. The execution limes of LocusRoute and
TunberWolf »re comparable for most of the examples, though
TimberWolf is faster by a factor of 8 and 3 respectively for cireuits
Test06 and Primary2. This is due to the fact that the LocusRoute
algorithm increases in running tune proportional to the area covered by
the wire, which is much larger in these two circuiu.

Circuit

Name

Wires

Total Dens

Locus l TWolf | %Few

BNRE I 420 138 179 22%

MDC 575 150 179 16%

BNRD 774 1S8 j 225 16%

Primaryl 904 262 316 17%

BNRC 937 202 247 18%

BNRB 1364 320 442 27%

BNRA 1634 315 432 27%

Tesl06 1673 335 537 37%

Primary2 3029 563 702 20%

Table 1 - Comparison of LocusRoute and TunberWolf

For comparison purposes a maze router [Lee61] was developed that
exhaustively determines the optimal solution to the two-point routing
problem as defined in Section 3. Note that it uses the same cost
function as the LocusRoute router. It also determines a good
approximation to the minimum-cost Steiner tree for multi-point wire»
using the approach described in [Aker72]. The maze router was
carefully optimized for speed. Table 2 shows the comparison of total
density and execution time for the maze router and the LocusRoute
router, for all of the test circuits. The comparison is made on the basis of
roughly equal numbers of vertical hops. Execution times «re for four
iterations over «11 wires on « DEC Micro V«x Q.

-3-

. * k «• - " - ' ■_ ■- "* v > ■. •■■- '- ■». "* ■% . rw '-"v , -v • -^ -Sr L "w /^■v L^wi.-w irw^-h vrm L-^ ..T» L"* „■'■• i-v ■L.'VI ;

Circuit

Name
Toul Density Time (Micro Vax Us)

Locus Maze ' Diff Locus Maze Factor

BNRE 138 129 7* 88 i 2378 27x

MDC 150 | 141 6% 178 3173 18x

BNRD 188 | 182 3% 167 3306 ; 20x

Prunaryl 262 255 3* 325 6534 20x

BNRC 202 189 7% 363 7250 20x

BNRB 320 308 4% 599 15116 1 25x

BNRA 315 294 1% I 769 19652 26x

Tesi06 335 316 6% 5137 92272 18x

Pnmary2 563 549 l 3% i 3758 48295 1 13x

Table 2 ■ Comparison of LocusRoute andMazt Router

For all circuits the LocusRoute total density (total number of routing
traclcs) is no greater than 79c more than that achieved by the maze
router, and in some cases is as little as 39c. Most of this difference is
due to the sub-optimality of dividing the wires up into two point nets.
LocusRoute is markedly faster than the maze router - ranging from 13 to
27 tunes faster. This gain in speed is more than worth the increase in
total density for the end-purpose of integrated placement and routing.

For two of our circuits, we can also compare the total routing
density with the United Technologies global router used in the recent
benchmark effort at the 1987 Physical Design Workshop
[Prea87,Robe87). The placements used above for circuits Primaryl and
Primary2 were also routed by the UT router. Table 3 shows the
comparison of total density for both circuits, with each router using
roughly the same number of vertical hops. The toul density of the UT
router for circuit Primaryl is notably less than for the LocusRoute
router. This is probably due to the fact that the UT router also performs
neighbour exchanges and cell orientation changes on the placement in
order to reduce the total number of tracks. The LocusRoute total density
for circuit Primary2 is slightly less than that achieved by the UT router.
We have no information on the execution tune of the UT router, except
that for circuits near the size of Primary2, it would take roughly 10000
Vax 11/780 second» [Robe«7].

Circuit Name «Wires Total Density

LocusRoute | Benchmark

Primaryl 904 253 i94

Priroary2 3029 560 562

Table 3 - Comparison of LocusRoute and Benchmark Router

5 Parallellzafion

In this section several ways of parallelizing the LocusRoute router
are proposed and implemented:

1. Wire-based Parallelism. Each processor is given an entire multi-
point wire to route.

2. Segment-based Parallelism. F-ach rwo-point segment produced by
the Kruskal decomposition can be routed in parallel.

3. Permuution-based Parallelism. Each of the four possible
permutations, as discussed in Section 4.1, can be evaluated in
parallel.

4. Route-based Parallelism, Each of the possible rwo-bend routes for
every permutation can be evaluated in parallel.

Note that these are only potential axes of parallelism. It is possible
to eliminate some of them as uneconomical by using statistical run-time
measurements of the sequential router. For example, the number of
two-point segments that actually need to have all four permuutions
evaluated is quite small with respect to the toul. Thus, permuution-
based parallelism is not gome to provide significant speedup and isn't
worth the lime it requires to develop. Other measurements, however,
show that the time spent evaluating the cost of two-bend routes ranges
from 50 to 90 percent of the toul routing tune, so that some amount of
speedup from route-based parallelism can be expected.

The following sections gives the details of three axes of parallelism,
their performance and a quantitative measure of the of degradation in
quality if there is some.

5.1 Wire-Based Parallelism

In Wire-Based parallelism, each multi-point wire is given to a
separate processor, which runs the LocusRoute routing algorithm as
described in Section 4. Thus, each processor executes the following
"flow" for a different wire: Prior to decomposition, if the iteration
technique is used, the wire must be 'ripped up" out of the Cost Array.
Next, each wire is decomposed into two-point nets, and possibly further
into permuutions. A subset of the potential two-bend routes is
generated, and then evaluated by traversing the Cost Array. When a
final route it chosen, the Cost Array is updated to reflect the new
presence of that route.

The Cost Array it a shared data structure to which all processors
have read and write access. This it an excellent axis of parallelism: if
the sharing of the Cost Array does not cause performance degradation
due to memory contention, the speedup should simply be the number of
wires thai are routed in parallel. The resulting parallel answer, however,
will not necessarily be the tame as the sequential answer. The problem is
that the sequential router has complete knowledge of all wires that have
already been routed, by virtue of their presence in the cott array. The
parallel router hat less information because it doesn't see the wires thai
are being routed simultaneously. The more wires routed in parallel, the
lest information each processor hat to choose good routes that avoid
congestion and hence the total density increases. The total density will
increase as the number of processors increases. The measured effect on
total density it discussed below, in Section 5.1.1.

-4 ■

«T.»» W «^w «W» '. < .•VL--«^^ ■-v '..T« VTUTk'^1.»^> rj« nji "^ rv ■ «".' /'., w. v-, rf-, x-y <r. «•, » , > j ^a» K • «■■ » n •■-" «_- *-*." i^ »- ^r fv j^nnrt f L'V L/W U-W LT'* V^i

An inicresling issue is whether or nol each processor should lock the
Cost Array as n both rips up and re-routes wires in the Cost ATav. The
act of ripping up a route is essentiallv a decrement, and re-routing is an
increment on a cell in the Cost Array. Locking the Cost Array dunng
these operations (lo ensure that two simultaneous operations on the same
element does nol prevent one of the operations from being lost) can
cause a senous performance degradation. However, the final routing
quality did not decrease when locking was omitted. The reason for this
is that the probability of two processors accessing the same Cost Array
element (of which there are many) at the same instant is very low. Even
if very few incremenl or decrement operations are lost, the effect on final
quality is negligible since only a few elements would be wrong by a
small amo'int-

5.1.1 Wire-Based Parallel Results

Figure 4 is a plot of the speedup versus number of processors for the
904-wire (Pnmaryl) example running on an eight-processor Encore

MULTIMAX. The speedup for/> processors, 5, is calculated as Ij-,
* P

where 7, is the execution time on one processor and 7, is the execution
time using p processors. The Encore uses National 32032 chip sets
which, in our benchmarks, timed out slightly faster than a DEC Micro
VaxO.

Speedup

2 3 4 5 6 7 8

Number of Prccessors

Figure 4 - Wire-Basal Speedup for Circuit Pnmaryl

Note that the execution time is only the actual routing compuution time,
excluding input time. The "knee" in the curve at five processors occurs
because on an eight-processor Encore two processors share one cache.
When five or more processors are used, pairs of processors interfere with
each other more. For this circuit the increase in total density (between 1
«nd 8 processors) is negligible, and the number of vertical hops increases
about 3%.

Table 4 gives the speedup using eight processors for the other test
circuits. The speedup ranges from 5.8 for a smaller circuit to 7.6 for the
largest. The speedup is less for smaller circuits because they are done in
»uch a short time, and the startup overhead becomes a factor. The
execution time is for four iterations over all the wires. It was discovered
that very Urge global wires, such as TRUE or FALSE that have up to
150 pins, caused a severe degradation in speedup. This is because our
system handles those nets just like any other, and the 0(12) nature of the
Kruskal algorithm causes load balancing problems. Since most
production systems treat TRUE and FALSE signal nets differently
(usually tapping directly into the power lines with special cells) these
were eliminated under the assumption that they could be handled quickly
thai way.

Table 5 gives the density and vertical hop counts for both 1 and 8
processors using wire-based parallelism. The degradation in total
density ranges between .7% to 7.6%. The increase in vertical hops is
generally i% or less, with one exception. In the placement context this
level of degradation is tolerable, though we have considered two ways of
reducing the problem. The first is lo try lo ensure that the different
processors only deal with wires that are in distinct physical areas, so that
the wires routed simultaneously do not interact. This approach was not
implemented because in the placement context (with incremental
placement "moves") the wires are most likely to be in the same area and
can't be separated.

Circuit

Name
1-Proc

Time (s)
8-Proc

Time (s)

8-Proc

Speedup

BNRE 78 13 SA

MDC 88 15 5.9

BNR0 156 22 7.0

Pnmaryl 321 47 6.8

BNRC 221 33 6.7

BNRB 697 92 7.6

B.VRA 878 124 7.1

Te5t06 6261 869 7.2

Primary2 1 4334 574 7.6

Table 4 - Wire-Based Parallelism Speedup

The second way to reduce processor interference is not to rip up a
route until the new route is determined. In this way there is a much
shorter period of time in which the cost array docs not contain the
presence of the wire. Unfortunately, this severely degrades the new
route of the wire itself since it sees the old copy of itself when new
routes are being evaluated. Experimentally, the degradation was found
to be bad enough to nullify any gain from the approach.

5.2 Segment-Based Parallelism

In segment-based parallelism, each two-point segment of a wire is
given to a different processor lo route. This is the stage following the
Kruskal decomposition, but prior lo the evaluation of different two-bend
routes. Measurements of the sequential router showed that about 60% of
the routing time was spent on wires with more than OM segment. This
means that a speedup of about two might be expected using three
processors. Even though there are many wires that provide two or
three-way parallel tasks, however, the size of those tasks ire not
necessarily equal. Ine amount of time taken by the LocusRoute router
to route two points is proportional to the Manhattan distance between the
two points. If, in a three-point wire, two of the points are close together
and the third is far away, it will then take much longer to route one
segment than the other. The processor assigned to the short segment will
be idle while the longer one is being routed. This unequal load prevents
a reasonable speedup. On the test circuits a speedup of about 1.1 using
two processors was measured.

-5-

j Circuit

Name

Dens

l-Proc :

lly

8-Proc

Veruca

l-Proc !

Hops

8-Proc

j BNRE 129 135 454 470

MDC 134 144 243 243

BNRD 1 181 185 528 I 562
i

Primary 1 262 264 934 i 958

BNRC 193 199 739 j 749

BNRB 312 326 1897 ! 1953

B.NRA 300
1

311 2103 ' 2154

Test06 325 336 3196 3253

Primary2 560 584 3022 ! 3097

Table 5 - Wire-Based Parallelism Quality

It is fairly clear, however, that an extra processor could be assigned
to a number of processors that are routing different wires. It is likely
that ai any given time, one of them will be able to use the extra processor
to route an extra segment. This technique would become essential in
wire-based parallelism if the number of processors were on the order of
the number of wires. In that case, the load balance would become a
problem because wires with many segments take much longer than wires
with few segments. Hence segment-based parallelism could be used as a
method to balance those loads.

Speedup

8-
7

6- _ m«i»ur»d

5-

4- ^^- ■—

3- y^^^
2- ^ y^

1 s^

1 2
i i i i i
3 4 5 6 7

Number of Processor«

8

Figure 5 - Route-Based Speedup for Test06

5.3 Route-Based Parallelism

In route-based parallelism all of the two-bend routes to be evaluated
»re divided among processors. Each finds the lowest-cost path among the
«el of two-bend routes that it is assigned. When all processors finish, the
route with the best overall cost is selected. In this case the processor
loads are well balanced because the routes are all of the same length, and
the number of routes is evenly divided among the processors.

Figure 5 is a plot of the speedup versus number of processors for the
circuit Test06, a large circuiL It achieves a speedup of 4.6 using 8
processors.

Table 6 gives the best speedup achieved for all of the test circuits,
ranging from 1.2 using 2 processors to 4.6 using 8 processors. The
principal reason for the limitation in speedup is the sequential portion of
the routing: the wire decomposition and the post-route processing that
places the presence of the route into the Cost Array. On the small circuits
that have lesser speedup, the sequential portion is about 50% of the total
routing time, while on the larger circuits which have better speedup the
sequential portion ranges from 10-15%. Another reason is that some
segments have only one potential route, limiting parallelism.

Circuit

Name
Best Route-based Speedup

(Speedup/W'rocessors)

BNRE 1.2/2

MDC 1.3/2

BNRD 1.4/2

Primaryl 1.8/3

BNRC 1,6/3

1NRB 2.1/4

BNRA 2.0/4

Tcst06 3.6/5, 4.6/8

Primaiy2 3.3/5

Table 6 - Performance of Route-Based Parallelism

5.4 Combining Two Axes of Parallelism

The wire-based paralle' and route-based parallel approaches art
perfectly orthogonal; hence their speedups should 'multiply". Assume,
for a given circuit that a speedup of Sw is achieved using wire-based
parallelism on W processors, and a speedup of S, is achieved using
route-based parallelism on R processors. Then, because the two
approaches are orthogonal, the resulting speedup when they are used
together should be SwxSr using W xR processors. This model
neglect« the effect of memory contention that may occur when the
number of processor« is increased dramatically. Table 7 shows the best
predicted speedup for the test circuits. Combined speedup ranges from 7
using 16 processors to 33 using 64 processors. The «mailer circuits are
routed very quickly and «o it is difficult to get speedups greater than 10
due to the startup overhead. The larger circuits benefit greatly from the
combihation of the approaches.

Table 7 also contain« the average routing time per net on one
processor, A), and what the the average routing time per net would be

under the maximum speedup, Agw. That is, Aitw = -f—^»-. The

average routing times for all circuits, under the various speedups range
from 5.0ms io 28ms, and approaches our goal of one to five milliseconds
per net

Circuit
S„ i S, S„ x 5,
IT x vnnr i ^ >]*** \

(ms) (ms)

BNRE J.8
I

7,0
It'" 46 £.6

MDC 1 5.9
8 ¥ 7.7

IF 38 5.0

BNRD 7.0 1.4 j 9.8 50 5.1

Primary 1 6.8 1 1.8 T 1 T 12.2
24 89 7J

BN-RC 6-7](> i I0-7 BNRC i "r -r ! -jr 59 5J

BNRB 7.6 ! 2.1 1 16.0
T \ i I 32 127 8.0

BVRA 1 7-l ! 20 1 iA-2
134 9.5

Tcst06 7.2 1 4.6 33
8' 1 T W 935 28

Primary? 7.6 1
6 1

3.3
-3"

25 358 14

Table 7 - Predurted Combined Speedup of Wire and Route Parallelism

5.5 Conclusions

A nsw global routing algorithm for standard cells and its parallel
implementation has been presented. The LocusRoute algorithm users
significantly fewer tracks than the TimberWolf standard cell global
router, and is comparable to a maze router and an industrial router. It is
more than a factor of 10 faster than either of the two latter routers. Three
axes of orthogonal parallelism were developed to speed up the
LocusRoute router further. Two of the three axes that were implemented
achieved significant speedup • up to 7.6 using eight processors and 4.6
using eight processors. They should produce combined speedups of up
to 33 times.

In the future, the combined approach will be run on a multiprocessor
with more processors. Using a sophisticated scheduling algorithm we
hope to do better than simple multiplication of speedups. The Locus
placement environment is currently being developed, and will be
combined with the LocusRoute global router. Our aim is to thieve
•mailer final area by using the global routing as a better measure of each
placement.

6 References

|AJ(er72]
S. B. Mers, "Rouiinji" Chapter 6 of Design Aulomalkjn of Digital
Sysltms; Thtory and Techniquts, MA, Breuer, Ed.. Engicwood Chffi. NJ.
Prrm.ce-Hall, 1972.

(BlanSl]
T. Blank, M, Slefik, W. VanCleempul, "A Parallel Bit Map Processor
Archiiectuir FOR DA ALGORITHMS." Proc, 18th Desijn Auiomauon
Conference, June 1981, pp, 837-845.

(Breu77]

M-A, Breuer, "Min-Cul Placement," Journal of Design Automation and
Fault-Tolerant Computing, Oci 1977, pp 343-362.

[BreuSl]
MA Breuer, K, Shamaa, "A Hardware Router," Journal of Digilal Systems
Vol IV, luue 4, 1981, pp. 393-408.

(Hana72)
M Hanan, IM. Kurabcrg, "Placement Techniques," Chapter 4 of Design
Aulomatioo of Digital Systenu; Theorv and Techniques, MA. Breuer Ed.
NJ. Prcnuce-Hall, 1972.

[XambSS)
T, Kambe, T, Okada, T. Chiha, I. Nishioka, "A Global Routing Scheme for
Polycell LSI," Proc. ISCAS 1985, pp. 187-190.

iXrus56)
IS. Kruskal, "On The Shorter Spanning Sub&re of a graph and the Traveling
Salesman Problem." Proc. Amer. Math. Soc, 7, 1956, pp, 48-50.

(Lee61)
C.Y. Lee, "An Algorithm for Path Connections and Its Applications," IRE
Transactions on Electronic Computers, Vol EC-10, pp 346-365, 1961.

[Nair87)
R. Naii,"A Simple Yet Effective Technique for Global Wiring," IEEE
Tranaactions on Computei-Aidcd Design, Vol CAD-6, Ko. 2, March Wk7, pp,
165-172.

[N(86]
A P-C Ng, P. Raghavan, CD. Thompson, "A Language for Describing
Rectilinear Sleiner Tree Configurations," Proc. 23rd Design Automation
Conference, June 1986, pp. 659-662.

[Prea87]
B.T. Prea», "Benchmarks for Cell-Baaed Layout Systems," Proc. 24rd Design
Automation Confcrenix, June 1987, pp. 319-320.

[Robe87]
Ken Roberts used the United Technologies Standard Cell global router on the
standard cell benchmark placement«. Result« were discuased at the 1987 DAC.

[Ro«e85]
J.S. Rose, W.M. Snelgrove, Z.G. Vranesic, "ALTOR: An Automatic Standard
Cell Layout Prog-am," Proc. Canadian Conference on VLSI, November 1985,
pp. 168-173.

[RoaeSS]
IS. Rose, WJ i. Snelgrvive, Z.G. Vranesic, "Parallel Standard Cell Placement
Algorithms with Quality Equivalent to Simulated Annealing," EEETrm«. on
CAD, Vol. CAD-7, No. 3. March 1988, pp. 3r7-396.

[RuwU]
RA. Rutenbar, T.N. Mudge. D.E. Atkin«, "A Cla»s of Cellular Architectures
to Support Physical Design Automation," BEE Tran«, on CAD, Vol, CAD-3,
No. 4, October 1984, pp. 264-278.

[SechSS]
C. Sechen, A Sangiovanni-Vincentelli, "The Timberwolf Plaeement and
Routing Package," IEEE JSSC, Vol. SC-20, No. 2, April 1985. pp 510-522.
pp. 432-439.

Acknowledgements

The author is grateful to Tom Blank who provided many good
suggestions for this paper. Thanks also to Grant Martin of Bell-Northern
Research for the use of company circuits and to the people involved in
the standard cell benchmark effort for supplying those lest circuits. Carl
Sechen provided version 4.1 of TimberWoUSC.

-7.

